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A new electron-phonon interaction characteristic of layer structures is described. Depending on the 
strength of the coupling between electron and lattice, this interaction, which involves short-range forces, 
leads to free or self-trapped charge carriers. The theoretical findings are compared with the experimentallv 
determined charge-carrier mobilities in GaSe and MoS2. 

1. INTRODUCTION 

A MONG the known semiconducting compounds, 
-* ^ there are a few which crystallize in mica-like 
layer structures characterized by strong covalent bonds 
within each layer and by weak van der Waals forces 
between layers. I t will be shown that this marked 
anisotropy results in a short-range interaction between 
excess charge carriers and optical lattice vibrations 
which is specific for layer structures. Similar to the 
electron-phonon interaction recently discussed by Toyo-
zawa,1 the present interaction gives rise to the following 
properties: If the carrier-lattice coupling is weak, the 
excess carriers behave as free quasiparticles, but if it 
is strong they become self-trapped in the lattice. The 
transition between weak and strong coupling is dis
continuous and, in the case of weak coupling, theory 
readily accounts for the anomalously strong tempera
ture dependence of the carrier mobilities observed in 
GaSe and MoS2, two semiconductors which both have 
the mica-like structure envisaged here. 

Inspection of the effective potential in which the 
excess carriers in a layer lattice move reveals the 
mechanism of the interaction. This potential is repro
duced schematically in Fig. 1 for a hypothetical crystal 
which consists of a series of layers stacked upon each 
other along the z direction. Within each layer but 
outside the atomic cores the potential is low and varies 
slowly. Between the layers, however, the contributions 
of the different atoms add up to high and fairly wide 
potential barriers. The carriers may, therefore, be said 
to move in a series of parallel potential wells in which 
they have local levels whose energies depend on the 
local width of the wells. I t then follows immediately 
that the interaction may be described by means of a 
deformation potential 

8d=a(d8i/da), (i) 

where &x is the energy of the local level and a the width 
of the well. Approximating the potential within one 
layer by a deep square well one has 

and hence 
Si~nVfi2/2ma2 

&d— — 2<§i. 

(2) 

(3) 
1 Y . Toyozawa, Polarons and Excitons (Oliver and Boyd, 

London, 1963). 

In the crystals of interest to us, a is of the order of a 
few angstroms so that even for the lowest level 0 = 1 ) 
the deformation potential may be as high as several 
electron volts. The interaction is, therefore, expected 
to dominate the transport properties of layer structures 
and hence to be readily observable in mobility 
measurements. 

2. THE CRYSTAL MODEL 

The hypothetical crystal which will serve as basis 
for our considerations consists of Nz identical layers 
stacked along the z direction with a primitive vector 
dz. Per area S, each of these layers contains Nx unit 
cells, dx being representative of the primitive vectors 
within the layers. Each unit cell positioned at n con
tains a pair of identical atoms (see Fig. 1) which 
represent an oscillator of reduced mass M, whose only 
relevant degree of freedom is the deviation f n from the 
equilibrium interatomic distance a in the % direction.2 

The potential seen by the excess carriers is a super
position of cellular potentials F(r—n, fn) so that the 
total Hamiltonian takes the form 

Htot=Hel+HUt= V r
2 + D F ( r - n , f„) 

2m 

h2 M<£ • 

—n»+—f„» 
2 

»L 2M 

I t admits the eigenfunctions 

* = E x . ( - f , - W f , f , ) l 

(4) 

(5) 

V(x,y 

FIG. 1. Schematic / 
representation of the ' 
effective potential in x , y 

a layer structure. 
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2 Vectors occuring as subscripts or superscripts are printed in 
lightface rather than boldface type. 
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where the <j>n are cellular functions denned by 

C- (^/2m)V f
2+F(r,fJ>(n}f J = <S(fn)0n(r,f„). (6) 

In this representation the interaction is contained in 
the f n dependence of the local levels 8. The coefficients 
Xn of the linear combination (5) satisfy the equation 

{_E— Hlaf— S(^n)jXn— 22 In,n+dXn+d, (7) 

where E is the total energy and i"»|W+d the overlap 
energy between cell n and cell n+d. 

At this point we introduce the simplifications justified 
by the strong anisotropy of the lattice. Thus, we first of 
all assume the local potential to be separable such that 
only the z component describing the barrier between 
the layers depends on f n: 

V(r£n)=Vx(x)+V2(z,U). (8) 

With this potential, the cellular functions <t>n are 

< ^ 0 , f n) = <t>nx ( x ) < ^ ( z , f „) , (9) 

and the corresponding local levels can be expanded as 
follows: 

«= 8*+ «.(£»)= 6.+ SM°+ {&d/a)i n+ • (10) 

where Sd plays the role of a deformation potential 
With the expansion (10) and with the normal mode 
coordinates 

1/2 

r»=E 
V f h \v* -i 

—i[ ) ake
tkn+c.c. , 

L \2MNJSfzJ J 
(11) 

ak and ak
+ being the annihilation and creation operators 

for the phonon state k, Eq. (7) reads 

{E-Z [7jba*c<*n+c.c.]-i: fcaah+ah}xn 

z2-i 1n,n+d^-n+d , (12) 

where 
-iiti/lMNJX&yi^Si/a). (13) 

As is specific for interactions of the deformation po
tential type with optical modes, Vk does not depend 
on k. 

Secondly, the strong^anisotropy of the structure 
suggests that the overlap energies In>n+dx=Ix and 
In,n+dz

:=Iz between adjoining cells satisfy the inequality 
Ix2>Iz. Iz can therefore be considered as a perturbation, 
the unperturbed states 

^n 2
O : =0n«(z—11, ) £ *nx<l>n9(x—nx) (14) 

being confined to a particular layer n2=const. If, then, 
we restrict k space to the plane k2=0 which contains 
the Brillouin zones corresponding to large interlayer 
distances (dz

2^>dx
2), the ^ns° represents the eigenfunc

tions of the two-dimensional Hamiltonian 

fl°= - (ft2V.V2w)+E Vx(x~nx) 

+ Z [ J W * - - + c . c . ; ] + £ hwak+ak, (IS) 
k k 

where the k^ are denned such that within an area S of 
one layer the functions eihxnx form a complete set. In 
the effective-mass approximation, (15) takes the form 

H°= _ (h^x
2/2mx)+Z [7jfca^*-n*+c.c.] 

k 

+Yi hua>k+ak (16) 
k 

and we will always assume the effective mass 
ntx—ffi/llaj&x2 to be isotropic. In conjunction with this 
Hamiltonian, it is convenient to introduce a dimension-
less coupling constant g which contains parameters 
pertaining only to the properties of a layer: 

g= (mxS/4:TrMNx)^(Sd/attcc). 

3. THE LOW-LYING STATES OF AN 
EXCESS CARRIER 

(17) 

We are now ready to determine the energy levels 
of an excess carrier in the model layer structure de
scribed above. Omitting the details of calculation we 
note that the low-lying ones among them can be ob
tained by minimizing the expectation value3 

E=(x'\H\x'), (18) 

where | %') is the trial state 

\x')=\Hi))u\o). (19) 

<$>(r) is an electronic function, |0) the phonon vacuum 
state, and U the unitary transformation 

U= exp[ Z (Jk*ak-oh+fk)l (20) 
k 

which has the property 

U+akU=ak+fk. (21) 

The fk are the variational parameters representing the 
displacement of the field oscillators induced by the 
excess carrier. 

If, first of all, we evaluate the unperturbed states 
which are confined to a single layer, we can in accord
ance with (14) choose <£(r) to be of the form 

^(r) = ̂ nz(S)-^ E ^ ( x - n j e ^ - / * , (22) 

which is compatible with the translational symmetry of 
the layer. The two limiting cases of free and trapped 
states, which correspond to weak and strong interaction 
respectively, are then readily obtained, the first with 

3E. P. Gross, Ann. Phys. (N. Y.) 8, 78 (1959). 
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the effective Hamiltonian (16), the second with the 
exact one (15). The results are: 

(a) Weak-Coupling Limit (g2<<Cl) 

In this case the energy of the excess carrier in the 
layer is 

Ef= -g2h* ]n(hk2
m^/2m^) + lpx

2/2mx(l+g2)l, (23) 

and corresponds to a free quasiparticle of mass mx(l+g2). 
The unfamiliar form of the self-energy, which contains 
the maximum wave number &max in the layer, is due 
to the fact that k space is two dimensional. 

(b) Strong-Coupling Limit 

Here the energy is 

Et°= -yhu-2Ixe-v cos(px-dx/h), (24) 

where the constant 7 = Sd2/2a2Mo)2ho) is assumed larger 
than unity. Corresponding to a narrow conduction 
band formed with deep-lying states, this spectrum is 
characteristic of a particle which is self-trapped within 
a unit cell. Carriers in such states give rise to low-
mobility transport phenomena. 

I t was shown by Toyozawa1 that for short-range inter
actions such as the one considered here, the transition 
from weak- to strong-coupling behavior is discontinu
ous. By means of the moderately localized wave function, 

$(r) = (a / (2*) ty-*«*(z) , (cr2>dx
2) (25) 

one can readily observe this discontinuity. Substituting 
(25) in (19) and minimizing the expectation value of 
the Hamiltonian (16) gives 

£ o = (h2a2/2mx) (1 -2£ 2 ) . (26) 

The first term of this expression is the energy of 
localization of the carrier within an area or2 of the 
layer and the second term is the elastic energy gained 
from the deformation of the lattice. Minimizing (26) 
with respect to a leads to the following two alterna
tives: If g 2 <§, the energy is positive and tends towards 
zero as a goes to zero. Because of its negative self-energy 
the free state is then preferred. If, on the other hand, 
g 2 >J , the energy becomes more and more negative as 
a increases towards its limiting value which is 
imposed by the discrete nature of the lattice. The 
carrier is then self-trapped within a unit cell. 

By comparison the behavior of polarons is entirely 
different. Unlike the present case where the second 
term in (26) is proportional to a2, the elastic energy of 
a polaron increases linearly with a, so that the corre
sponding self-energy has a (negative) minimum for 
0<a<&max. Moderately localized polaron states are 
therefore possible and the transition between delocal-
ized and strongly localized states is continuous. 

By perturbation calculation we can now construct 
crystal states in the form of Bloch sums of the un

perturbed states, which are invariant with respect to 
translations n*. Omitting corrections due to the finite 
thickness of the phonon Brillouin zones, the corre
sponding energy spectra for free and self-trapped 
carriers are 

Ef=E/~-2Iz(l-g
2) cos(p,.d./ft) (27) 

and 
Et=Et0-2Izerycos(p,-&M/ti). (28) 

4. THE FREE-CARRIER MOBILITY IN 
LAYER STRUCTURES 

Making use of time-dependent perturbation theory 
we restrict ourselves here to determining the mobility 
of free carriers to the first order in g2. For g2<K|, the 
low-lying states are described with sufficient accuracy 
by 

* = (NAS)-1'* Z ei(vm n4>n ( r - n ) , (29) 
n 

their energy distribution being given by (27). Since 
Iz is small, we have for all temperatures of interest 
Iz<kT so that the pertinent part of the spectrum is 

E^px
2/2mx. (30) 

The corresponding density of states 

Nzdz S r da m^ 
D(E) = — / = N, (31) 

2TT 4:Tr*JE=constVpE 2wh2 

is independent of energy. With (30) and with the 
perturbation Hamiltonian 

tfpert=Z [ F ( r - n , f n ) ~ F ( r ~ n , 0 ) ] , (32) 
n 

the probability of a charge carrier to make a transition 
from state p to state p' while absorbing a phonon with 
wave vector k is given by 

2w Uk h2 

JP(P,P') = W 
h NzS2mx 

X £ c o X $ ( p - p ' + k ) $ ( £ p - £ ^ + M , (33) 

where tik is the density of phonons. Since such transi
tions do not conserve the energy of the carrier, the 
total scattering probabilities are evaluated by means of 
the method of Howarth and Sondheimer4 which leads 
to the following diagonal components of the mobility 
tensor: 

e 1 e^
kT-l 

Mzs= , (34) 
2mxcc 4cirg2 l+ha>/2kT 

1212 / ha> \ 
Vzz=Vxx ( H 1. (35) 

kT7r2h2/2mJ2\ 2kT/ 
4 D. J. Howarth and E. H. Sondheimer, Proc. Roy. Soc. 

(London) A219, 53 (1953). 
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FIG. 2. Hall mo
bility of the charge 
carriers in monocrys-
talline GaSe arid 
MoS2. 
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I t should be noted that these results are valid only as 
long as the Boltzmann equation gives the proper dis
tribution of carriers interacting with high-energy 
phonons. 

5. COMPARISON WITH EXPERIMENT 
AND DISCUSSION 

The charge-carrier mobilities of a series of single 
crystalline samples of ^-type GaSe and of n-type MoS2 

are shown in Fig. 2 as functions of temperature. These 
curves were obtained from four-probe measurements 
of resistivity and Hall constant5 with the electric 
current parallel and the magnetic field perpendicular 
to the layers. The present room-temperature hole 
mobility of GaSe is an order of magnitude greater than 
that reported previously.6,7 This discrepancy is due to 
the superior quality of crystals grown from the vapor 
phase by transport reaction8 as compared to that of 
crystals grown from the melt.9 

The pertinent feature of the experimental findings is 
the rapid decrease of mobility with increasing tem
perature.10 Approximating the high-temperature data 
by JJL^T~P, one finds ]8 values as high as 2.2 in GaSe 
and 2.4 in M0S2, which can be explained in terms of 
the interaction discussed in the preceding section. 

6 R. Fivaz, Helv. Phys. Acta 36, 1052 (1963). 
6 P. Fielding, G. Fischer, and E. Mooser, Phys. Chem. Solids 

8, 434 (1959). 
7 G. Fischer and J. L. Brebner, Phys. Chem. Solids 23, 1363 

(1962). 
8 H. U. Boelsterli and E. Mooser, Helv. Phys. Acta 35, 538 

(1962). 
9 A. Beck and E. Mooser, Helv. Phys. Acta 34, 370 (1961). 
10 The ascending low-temperature branches of the mobility 

curves are related to extrinsic properties and will not, therefore, 
be considered here. 

Indeed, one arrives at a reasonable agreement between 
experiment and formula (34) with a vibrational energy 
5X10"2 eV<^co<10_1 eV consistent with the force con
stants normally met in covalent crystals, with a 
coupling constant g2~ 1/40 corresponding to a deforma
tion potential &d~6 eV and with an effective mass mx 

close to the true electron mass. The over-all consistency 
of theory reflected by this agreement lends strong 
support to the proposed interaction between charge 
carriers and optical phonons in layer structures. 

Finally we mention that the crystal model outlined 
in Sec. 2 affords a simple explanation for the fact that 
GaSe is always ^-type even when heavily doped with 
Ge, which merely results in a compensation of the 
excess holes. The argument runs as follows. Valence 
and conduction bands of a semiconductor are associated 
with different eigenvalues of the cellular Eq. (6). Since 
in a layer structure these eigenvalues have the form 
(10), two nondegenerate ones can differ in 8X and/or 
Sz. If, in particular, Sz is common to both valence and 
conduction bands, then the deformation potentials for 
holes and electrons are of the same order of magnitude 
and the mobilities of the two kinds of carrier are 
similar. If, however, the Sz corresponding to the con
duction band represents an excited level of the po
tential well | j z > l i n E q . (2)] then the deformation 
potential of this band is greater than that of the 
valence band, which is associated with the lowest level 
Sz. This immediately leads to the ^-type conduction 
actually observed in GaSe. Moreover, the coupling 
constant may increase beyond the critical value so 
that the excess electrons become self-trapped in the 
manner shown in Sec. 3. I t is not unlikely therefore 
that electron trapping contributes to the formation of 
the narrow lines found in the absorption edge of 
GaSe,6,11,12 which are normally attributed to excitons.13 

In conclusion we may say that the proposed short-
range interaction accounts for some of the properties 
of semiconducting layer structures and that these 
structures offer a new field for the experimental con
firmation of theories of electron-lattice interaction. 
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